

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

1

Extended Space Doppler Processing for Non-Cooperative Ground Moving Target Imaging

cnit

National Inter-University Consortium for Telecommunications of Italy

S. Gelli A. Bacci M. Martorella F. Berizzi

Aim of the work

Define and test a technique for **imaging of moving targets in a SAR scene in presence of strong ground clutter**

Proposed solution Joint E-SDAP - ISAR technique

E-SDAP: Extended Space Doppler Adaptive Processing **ISAR:** Inverse Synthetic Aperture Radar

Outline

• ISAR from SAR:

A solution based on ISAR processing for high resolution imaging of non-cooperative moving target in SAR images is introduced.

Detection Issues in Bistatic Configuration:

The problem of clutter non-stationarity along range dimension and clutter heterogeneity is addressed.

Extended Space Doppler Adaptive Processing:

Joint Extended-SDAP ISAR has been proposed for clutter suppression in strong non-stationary environment with high resolution imaging of noncooperative moving target

<u>Results</u>:

Results on simulated data are presented

ISAR from SAR

 A solution based on ISAR processing to compensate the unknown part of the relative motion between radar and non-cooperative target is proposed

- ISAR processing can be applied after target detection
- Detection of ground target embedded in strong ground clutter can be a critical issue

Detection issue: Multichannel SAR Signal

Detection issue: Homogeneous Clutter Assumption

• Optimal STAP employ assumption (restrictive) of statistically independent and identically distributed (IID) training data in clutter covariance estimation

$$\begin{array}{c} T_{obs} = 1s \\ PRF = 1KHz \end{array} \right\} \xrightarrow{\begin{subarray}{c} M = 1000 \\ P = 3 \end{array} \xrightarrow{\begin{subarray}{c} 2MP = 6000 \\ \delta_r = 0.5m \end{array} \xrightarrow{\begin{subarray}{c} Homogeneous \\ Area of 3 \ Km \end{array}}$$

 In general temporally and spatial clutter variation cause an alteration in clutter covariance estimation leading to degradation of STAP performance

Detection issue: Internal Clutter Motion

• The **Doppler shift of the stationary clutter seen by the moving platform varies with the look angle** results in the clutter ridge in the angle/Doppler plane

- The motion of objects (like tree leaves motion)cause a pulse to pulse decorrelation of the received clutter.
- In general **temporal and spatial variation in clutter** reflectivity produce a degradation of STAP performance. Sub-optimum approach can mitigate the effect of heterogeneity

Detection issue: Clutter Angle/Doppler behavior in bistatic geometry

• Clutter return exhibits a range dependent Doppler shift that varies with platform velocity as well as the direction and the width of the antenna beam

 Bistatic Collection geometry influence clutter angle/Doppler response for a given range cell and in general clutter behavior shows some degrees of variation along range

E-SDAP: solution proposal

• Range dependence breaks the IID assumption degrading STAP performance

$$E\left[\hat{\mathbf{R}}\right] = \frac{1}{N_r} \sum_{n_r=1}^{N_r} \mathbf{Z}(n_r) \mathbf{Z}^H(n_r) = \frac{1}{N_r} \sum_{n_r=1}^{N_r} \mathbf{R}_{n_r}$$

$$\mathbf{Z}(n_r): CN(0, \mathbf{R}_{n_r})$$
$$\mathbf{R}_{n_{r1}} \neq \mathbf{R}_{n_{r2}}$$

• A possible way to take into account clutter range and Doppler frequency variation consist in **exploiting power series expansion of the instantaneous weight vector**

Extended Space Doppler Adaptive Processing (E-SDAP)

- E-SDAP is derived from multichannel Space Doppler adaptive algorithm (SDAP) and is structurally and algorithmically different from conventional bistatic STAP
- E-SDAP perform space-time varying clutter suppression and platform motion compensation leading to a defocused image of moving target

Joint E-SDAP ISAR

E-SDAP: SDAP description

In absence of ground stationary clutter... STACKING OPERATION $\mathbf{S}(n, m_D) = [S_1(n, m_D), \dots, S_P(n, m_D)]^T \in C^{P \times 1}$ $S_{p}(n,m_{D}) = DFT_{m}\left\{S_{p}(n,m)\right\}$ $\mathbf{S}(n) = \left[\mathbf{S}^{T}(n,0), \dots, \mathbf{S}^{T}(n,M-1)\right]^{T} \in C^{MP \times 1}$ **RD** processing $f_D(n,m_D) = \mathbf{G}^H(n,m_D)\mathbf{S}(n)$ $\mathbf{G}(n, m_D)$ RD target matched filter (MF) In presence of ground stationary clutter... SDAP $f_D(n,m_D) = \mathbf{W}^H(n,m_D)\mathbf{S}(n)$ $\mathbf{W}^{H}(n,m_{D})$ Clutter whitening + RD-MF $\mathbf{W}(n,m_D) = \delta \hat{\mathbf{R}}_D^{-1} \mathbf{G}(n,m_D) \in C^{MP \times 1}$ $\hat{\mathbf{R}}_{D} = \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \mathbf{Z}(n_{r}) \mathbf{Z}^{H}(n_{r}) \in C^{MP \times MP}$ SDAP perform clutter suppression and platform motion compensation leading to a detect but unfocussed target

E-SDAP Processing

 $\tilde{\mathbf{W}}(n_r,m) = \tilde{\mathbf{W}}_0(n_r,m) + n_r \Delta \tilde{\mathbf{W}}(n_r,m)$ Fixed and linearly time variable component model

- $\tilde{\mathbf{W}}(n,m) = DFT_{n_r}\{\tilde{\mathbf{W}}(n_r,m)\}$
- Filtering operation to avoid range cell migration

 $\tilde{\mathbf{W}}(n,m_D) = DFT_m\{\tilde{\mathbf{W}}(n,m)\}$

• SDAP weights in the frequency Doppler domain

Results: Simulated Scenario

	Center Frequency	9.6 GHz	
A	Tx Bandwidth	500 MHz	
XXX	Observation Time	0.2 sec	
)°	Channel Distance	0.015m	1
4500 <i>m</i>	PRF	500 KHZ	
	Receiver Channels	3	
11	Bistatic Angle	110°	
16 8 10			י ו
	Tx parameters	Rx parameters	
Altitude	4000 m	4500 m	
Velocity	50 m/s	60 m/s	
	78.6°	78 5°	
	4500m Altitude Velocity	Center Frequency Tx Bandwidth Observation Time Channel Distance PRF Receiver Channels Bistatic Angle XItitude Velocity Channel Distance PRF Receiver Channels Channels Channel Distance PRF Receiver Channels Channels Channel Distance PRF Receiver Channels Channel Distance PRF Receiver Channels Channel Distance PRF Receiver Channels Channel Distance PRF Receiver Channels Channel Distance PRF Receiver Channels Channel Distance Channel Distance Cha	4500m 4500m 4500m Center Frequency 9.6 GHz Tx Bandwidth 500 MHz Observation Time 0.2 sec Channel Distance 0.015m PRF 500 KHZ Receiver Channels 3 Bistatic Angle 110° Tx parameters Rx parameters Altitude 4000 m 4500 m Velocity 50 m/s 60 m/s Look Angle 78.6° 78.5°

- Dataset simulated by Warsaw Institute of Technology has been used
- Two slow moving targets are present: large truck (10m/s) and military truck (8m/s). A point-like target (3m/s) has also been added

Results: ISAR Refocusing

1.1	SAR IC	ISAR IC	
Crop1	2.55	19.28	
Crop2	0.58	2.62	
Crop3	1.81	2.79	

TARGET 3

Refocused Target

Results: Comparison between 2D null filters

- The **improvement in the image refocus** is quite evident as it is possible to see from a visual point of view and from Image Contrast value
- Both the filters SDAP and E-SDAPare centered along the clutter angle/Doppler ridge but only E-SDAP filter have a narrow bandwidth and allows detection of for slow moving targets
- The mismatch between the estimated and exact clutter covariance matrix leads to a undernulling effect that increased the interference residual in the SDAP image , or overnulling effect where both target and clutter are cancelled
- The sub-optimal E-SDAP approach has been used in order to reduce the number of required training data. Less training data correspond to a small range area where is more reasonable to approximate clutter range variation as linear

Conclusions

- A different version of STAP algorithm for Multichannel SAR system called SDAP in bistatic configuration has been introduced
- Joint use of **bistatic STAP and ISAR technique for both clutter** suppression and imaging has been developed

Future developments

- Apply joint bistatic STAP-ISAR processing to real a data set
- The development of **Knowledge-Aided bistatic STAP** processing based on the concept of **Virtual STAP**

